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The chemical potential of an electron gas 

D. E. G. WILLIAMS and K. GOTO? 
Department of Physics, Loughborough University, Leicestershire, England 
MS.  received 26th iwarch 1970, in revised form 14th M a y  1970 

Abstract. The effect of a change in volume on the chemical potential of an 
electron gas is investigated. I t  is found that an increase in volume generally 
gives rise to a decrease in chemical potential, the temperature coefficient of the 
chemical potential being of the same order of magnitude as the coefficient of 
volume expansion. 

1. Introduction 
The usual approach to the collective electron theory of metals (e.g. Stoner 1938) 

is through the grand partition function, and this results in the thermodynamic 
potential 

where T is the temperature, V the volume, p the chemical potential, and PV the 
product of pressure and volume of the electron gas. The expression for the Helmholtz 
free energy is then 

F = G + Q  = N p + R  

where G is the Gibbs free energy of the electron gas and N the number of electrons in it, 
and various measurable quantities are derived from this Helmholtz free energy, e.g. 
following Stoner, the magnetic susceptibility for paramagnetic materials is given by 

R = R( T ,  Y ,  p) = -PV( T, V ,  p) 

where H is the magnetic field strength. The  derived quantity is then used to predict, 
for example, the temperature variation of the measurable quantity. 

The  results of this technique do not take into account the variations in volume to 
which the electron gas is subject as its temperature alters-in terms of a very simple 
model, the electron gas is contained within a container (the crystal) which expands as 
the temperature is increased. It has only recently been pointed out (Fischer et al. 
1969) that this expansion should be taken into account by considering the complete 
derivative of the measurable quantity. Thus, if our measurable quantity is denoted by 
A, the measured temperature variation of A should be written as 

If the number of electrons in the electron gas altered appreciably with a change in 
temperature, this equation would need to be rewritten as 

dA i3A 8A d V  aA d N  _ -  
d T  - (E)N,v+ dTs (%)v,TE 
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but we concern ourselves here only with electron gases containing a fixed number of 
electrons. 

2. The free-electron gas 
In  the case of the free-electron gas we have the density of states per unit energy 

range, per unit volume: 
%(E) = aE1I2 

where a is a constant, independent of volume. Hence if a volume V contains N free 
electrons, at zero temperature we have 

where po is the chemical potential of the electron gas at T = 0. On integrating this 
expression we find 

so that. at T = 0. 

_ -  - 
V - J exp{(E-p)/kT]+ I 

which, in the notation used by Landsberg (1961), may be written as 

N 
V 

where r(3/2) is a gamma function, 7 = p/kT, and 

I (c ,  s, * )  = ___ 

where s > - 1. On differentiating equation (2) with respect to 7 ,  we find 

- (z) = u ( ~ T ) ~ / ~  I'(1/2)1(7, -3, +) 
V2 '7 T , N  

which may be rewritten as 

For 7 $ 1, the right-hand side may be expanded (Landsberg 1961-$31) to give 

so that, for p >> KT, we may say that (8p /aV) , , ,  is effectively independent of tempera- 
ture. We would therefore expect that we could assume with confidence that 
( 2 p / 8 V ) T , N  is independent of temperature to temperatures at least as high as room 
temperature, and possibly to much higher temperatures. 
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On substituting in an equation for the chemical potential analogous to equation (l), 
we find that 

but the coefficient of volume expansion t( = (l/V)(dV/dT), with the result that 

The  first term of the right-hand side of this equation is given for the free-electron gas 
as 

The  relative importance of the two terms in equation (3) can be roughly estimated by 
the observations that estimates of po for metals give values of about 5 eV, that Boltz- 
mann's constant k N eV K-l and that, for metals, the coefficient of volume 
expansion at T = 300 K is about 3 x K-l. Using these figures gives 

(5) 

so that, even when T = 300 K, the first term only represents about 1% of the tempera- 
ture variation of p. 

We can thus say that, for a free-electron gas whose volume is expanded arbitrarily 
as the temperature increases, the temperature variation of the chemical potential is 
dominated by the expansion of its enclosure, even when the coefficient of this is of the 
order of K-l. This can be explained physically by recollecting that the separa- 
tion of the energy states in the free-electron gas is proportional to V-2'3; the electron 
concentration is proportional to V-I. Hence, when the volume of the enclosure alters, 
these two quantities do not alter so as to cancel out each others' effects, and conse- 
quently the chemical potential alters significantly with increase in temperature. 

3. The general case 

The generalization of the collective electron theory is obtained by introducing the 
general density of states n(E) per unit energy range per unit volume. I n  this case we 
may write, for T = 0, 

so that 

N 
- = n(E)dE 
v o  

N 
V2 

- - d V  = n(po) dpo 

i.e. 

Hence, assuming that this quantity is appreciably unaltered by increasing temperature, 
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and that the density of states is independent of volume, we have 

where Qo is the electron concentration for T = 0. I t  is not a simple matter to general- 
ize from this equation; in the case n(E) = aE’ then Qo/n(po)  = p 0 / ( y +  1) will be of 
the same order of magnitude as po, and less than po (unless Y < 0). If we accept this 
as a general form we may write 

(;)Tg= -c”po 

where c < 1 is a constant for a given Qo and n(E).  The first term in the equation for 
dp/dT is given by Stoner (1936) as 

so that 

Once more it seems reasonable that the second term should be larger, so that we can 
say that, in general, p decreases as the temperature increases. The  rate of decrease is 
of the same order of magnitude of the coefficient of volume expansion which, for 
metals, is K-l. 

4. Application 
The direct method of finding the chemical potential of electron gases in metals is 

by measurement of the contact potential. The information obtained from such 
measurements is often contradictory (e.g. Fomenko 1966) and figures for the variation 
of contact potential with temperature are not readily available. On the other hand the 
work function of a metal is defined by 

e =  IW-PI 

d e  

where W is the energy of the bottom of the energy band : if we assume W is independ- 
ent of T, then 

dP - _ -  - _  
d T  d T  

so that the work function should vary with temperature in the opposite sense to the 
variation of chemical potential with temperature. Some measurements of the variation 
of the work function with temperature are available (Fomenko 1966, Kruger and 
Stabenow 1935), and for polycrystalline tungsten the value is about 6 x eV K-l. 
(Measurements on single crystal specimens show that d+/dT depends on the face of 
the crystal from which the emission takes place, but the interpretation of single 
crystal measurements demands a more sophisticated model than the collective electron 
gas.) The  order of magnitude agreement of measured values of d4/dT with the pre- 
dicted value of dp/dT (equation ( 5 ) )  is interesting: one possible contribution to the 
variation of with T is the thermoelectric potential between the two electrodes in a 
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measuring circuit. The  contribution from this to 4 would be 

T' uT d T  s:: (1, -T) dT' 
where uT is the thermoelectric Thomson coefficient. It is difficult to estimate the 
importance of this contribution in thermionic experiments, but if measurements 
were made of the contact potential over a small range of temperature about room 
temperature, estimates of its magnitude could be made. Typically, at 0 "C, this 
contribution is about eV K-l, i.e. a factor of ten smaller than the variation of p 
due to the volume change. 
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